để tìm gtnn áp dụng bđt côsi
để tìm gtln
Lại có: \(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\ge2\)Tương tự \(\frac{b}{c}+\frac{c}{b}\ge2;\frac{c}{a}+\frac{a}{c}\ge2\)
Ta có: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=1+\frac{b}{a}+\frac{b}{a}+\frac{a}{b}+1+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+1\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge9\)
Dấu "=" xảy ra khi \(a=b=c\)