\(B=3x^2-6xy+5y^2-y+3x+2016\)
\(3B=9x^2-18xy+15y^2-3y+9x+6048\)
\(3B=\left(9x^2-18xy+9y^2\right)+3\left(3x-3y\right)+\dfrac{9}{4}+\left(6y^2+6y+\dfrac{3}{2}\right)+6044,25\)
\(3B=\left(3x-3y\right)^2+3\left(3x-3y\right)+\dfrac{9}{4}+6\left(y^2+y+\dfrac{1}{4}\right)+6044,25\)
\(3B=\left(3x-3y+\dfrac{3}{2}\right)^2+6\left(y+\dfrac{1}{2}\right)^2+6044,25\ge6044,25\)
\(\Rightarrow B\ge2014,75\Leftrightarrow y=-\dfrac{1}{2};x=-1\)
Vậy MINB=2014,75<=>x=-1;y=-1/2