Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ღHàn Thiên Băng ღ

Tìm GTNN; GTLN của các biểu thức sau:

a) A= x2 - 4x + 1

b) B= 5 - 8x - x2

c) C= 5x - x2

d) D= ( x - 1 )(x + 3)( x + 2 )( x + 6)

\(E=\frac{1}{x^2+5x+14}\)

f)\(F=\frac{2x^2+4x+10}{x^2+2x+3}\)

 

luuthianhhuyen
3 tháng 12 2018 lúc 15:29

\(x^2-4x+1=x^2-2\cdot x\cdot2+4-4+1=\left(x-2\right)^2-4+1\)

\(=\left(x-2\right)^2-3\)    \(\forall x\in Z\)

\(\Rightarrow A_{min}=-3khix=2\)

Nguyệt
3 tháng 12 2018 lúc 16:35

\(a,A=x^2-4x+1=x^2-2.2.x+2^2-3=\left(x-2\right)^2-3\ge-3\)

dấu = xảy ra khi x-2=0

=> x=2

Vậy MinA=-3 khi x=2

\(b,B=5-8x-x^2=-\left(x^2+8x+5\right)=-\left(x^2+2.4.x+4^2\right)+9=-\left(x+4\right)^2+9\le9\)

dấu = xảy ra khi x+4=0

=> x=-4

Vậy MaxB=9 khi x=-4

\(c,C=5x-x^2=-\left(x^2-5x\right)=-\left(x^2-\frac{2.x.5}{2}+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

dấu = xảy ra khi \(x-\frac{5}{2}=0\)

=> x=\(\frac{5}{2}\)

Vậy Max C=\(\frac{25}{4}\)khi x=\(\frac{5}{2}\)

\(E=\frac{1}{x^2+5x+14}=\frac{1}{x^2+\frac{2.x.5}{2}+\frac{25}{4}+\frac{31}{4}}=\frac{1}{\left(x+\frac{5}{2}\right)^2+\frac{31}{4}}\)

\(\left(x+\frac{5}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\)

dấu = xảy ra khi \(x+\frac{5}{2}=0\)

=> x\(=-\frac{5}{2}\)

vì tử thức >0,mẫu thức nhỏ nhất và lớn hơn 0 => E lớnnhất khi mẫu thức nhỏ nhất 

Vậy \(MaxE=\frac{31}{4}\)khi x\(=-\frac{5}{2}\)

kudo shinichi
3 tháng 12 2018 lúc 16:37

Tự trình bày nhé. Gợi ý thôi

\(B=5-8x-x^2\)

\(B=-\left(x^2+2.x.4+4^2\right)+21\)

\(B=-\left(x+4\right)^2+21\le21\forall x\)

\(C=5x-x^2=-\left(x^2-2.x.2,5+2,5^2\right)+6,25=-\left(x-2,5\right)^2+6,25\le6,25\forall x\)

\(D=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)

\(D=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(D=\left(x^2+5x\right)^2-36\ge-36\forall x\)


Các câu hỏi tương tự
trần thị hoàng yến
Xem chi tiết
Bùi Đức Thắng
Xem chi tiết
Hồ Trần Bảo Hoàng_8A
Xem chi tiết
trần thị hoàng yến
Xem chi tiết
Law Trafargal
Xem chi tiết
Quang Teo
Xem chi tiết
Lê Thanh Dương
Xem chi tiết
thiên thần
Xem chi tiết
Law Trafargal
Xem chi tiết