\(Q=x^2+5y^2+4xy-2x-8y+2015\)
\(=\left(x^2+4xy+4y^2\right)-\left(2x+4y\right)+1+y^2-4y+4+2010\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+1+\left(y-2\right)^2+2010\)
\(=\left(x+2y-1\right)^2+\left(y-2\right)^2+2010\ge2010\forall x;y\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x+2y-1=0\\y-2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-3\\y=2\end{cases}}\)
Vậy GTNN của Q là 2010 khi \(x=-3,y=2\)