\(A=9x^2-12x+10\)
\(=\left(3x\right)^2-2.2.3x+4+6\)
\(=\left[\left(3x\right)^2-2.2.3x-2^2\right]+6\)
\(=\left(3x-2\right)^2+10\)
Ta có :
\(\left(3x-2\right)^2\ge0\)
\(\Rightarrow\left(3x-2\right)^2+6\ge6\)
\(\Rightarrow A\ge6\)
\(\Rightarrow A_{min}=6\Leftrightarrow3x-2=0\rightarrow x=\frac{2}{3}\)