\(T=\left|x-1\right|+\left|x+3\right|+\left|x-3\right|\)
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) đấu "=" xảy ra \(\Leftrightarrow ab\ge0\) ta có :
\(T=\left|x-1\right|+\left|x+3\right|+\left|3-x\right|\ge\left|x-1\right|+\left|x+3+3-x\right|=\left|x-1\right|+6\ge6\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-1\right|=0\\\left(x+3\right)\left(3-x\right)\ge0\end{cases}\Rightarrow x=1\left(TM\right)}\)
Vật \(T_{min}=6\) tại x = 1