Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Như Quỳnh

Tìm GTNN của P=2x2+y2-2xy-6x+2y+2024

T.Q.Hưng.947857
18 tháng 10 2019 lúc 22:16

 P=2x2+y2-2xy-6x+2y+2024

=>2P=4x2+2y2-4xy-12x+4y+4048

=(2x-y-3)2+y2-2y+1+4038

=(2x-y-3)2+(y-1)2+4038> hoặc = 4038

Dấu = xảy ra <=>2x-y-3=0 và y-1=0=>x=2;y=1=>2p=4038=>p=2019

Vậy Pmin=2019<=>x=2;y=1

Khách vãng lai đã xóa
Edogawa Conan
18 tháng 10 2019 lúc 22:24

Ta có: 

P = 2x2 + y2 - 2xy - 6x + 2y + 2024

P = (x2 - 2xy + y2) - 2(x - y) + 1 + (x2 - 4x + 4) + 2019

P = [(x - y)2 - 2(x - y) + 1] + (x - 2)2 + 2019

P = (x - y - 1)2 + (x - 2)2 + 2019 \(\ge\)2019 \(\forall\)x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\) <=> \(\hept{\begin{cases}y=x-1\\x=2\end{cases}}\) <=> \(\hept{\begin{cases}y=1\\x=2\end{cases}}\)

Vậy MinP = 2019 <=> x = 2 và y = 1

Khách vãng lai đã xóa
Hoàng Ninh
19 tháng 10 2019 lúc 5:57

\(P=2x^2+y^2-2xy-6x+2y+2024\)

\(\Rightarrow P=\left(x^2-2xy+y^2\right)-2\left(x-y\right)+1+\left(x^2-4x+4\right)+2019\)

\(\Rightarrow P=\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]+\left(x-2\right)^2+2019\)

\(\Rightarrow P=\left(x-y-1\right)^2+\left(x-2\right)^2+2019\)

Ta có:

\(\left(x-y-1\right)^2\ge0\forall x;y\inℝ\)

\(\left(x-2\right)^2\ge0\forall x\inℝ\)

\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x;y\inℝ\)

\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2+2019\ge2019\forall x;y\inℝ\)

\(\Rightarrow P\ge2019\forall x;y\inℝ\)

Dấu "=" xảy ra:

\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=2\end{cases}}}\)

Vậy P nhỏ nhất khi P = 2019 tại x=2;y=1

Chúc bạn học tốt nhé!

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyen Hai Dang
Xem chi tiết
Vinh Lê Thành
Xem chi tiết
Nguyễn Gia Bảo
Xem chi tiết
Hoang Yen Pham
Xem chi tiết
Duy Nguyễn Khánh
Xem chi tiết
Xem chi tiết
phạm Lê minh
Xem chi tiết
Azure phan bảo linh
Xem chi tiết
Lelemalin
Xem chi tiết