\(C=\frac{1}{4}\left(4x^2+4xy+y^2\right)+\frac{3}{4}\left(y^2+4y+4\right)+2\)
\(C=\frac{1}{4}\left(2x+y\right)^2+\frac{3}{4}\left(y+2\right)^2+2\ge2\)
\(C_{min}=2\) khi \(\left\{{}\begin{matrix}2x+y=0\\y+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)