Ta có :
\(P=\left(x+y\right)\left(x^2-xy+y^2\right)+xy=x^2-xy+y^2+xy=x^2+y^2\) (Do x + y = 1)
Áp dụng bđt Bunhiacopxki ta có : \(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(1.x+1.y\right)^2\)
\(\Leftrightarrow2P\ge\left(x+y\right)^2\Rightarrow P\ge\frac{\left(x+y\right)^2}{2}=\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)