\(2x^2+3x+4\)
\(=2\left(x^2+\frac{3}{2}x+2\right)\)
\(=2\left(x^2+2.x.\frac{3}{4}+\frac{9}{16}+\frac{23}{16}\right)\)
\(=2\left(\left(x+\frac{3}{4}\right)^2+\frac{23}{16}\right)\)
\(=\frac{23}{8}+2\left(x+\frac{3}{4}\right)^2\ge\frac{23}{8}\)
MIN = \(\frac{23}{8}< =>x+\frac{3}{4}=0\)
\(=>x=\frac{-3}{4}\)