\(B=\left|2x+3,5\right|+\left|2x+\frac{7}{2}\right|\)
\(=\left|3,5-2x\right|+\left|2x+3,5\right|\ge\left|3,5-2x+2x+3,5\right|=7\)
Dấu '' = '' xảy ra khi \(\left(3,5-2x\right)\left(2x+3,5\right)\ge0\)
\(\Rightarrow\orbr{\begin{cases}3,5-2x\ge0;2x+3,5\ge0\\3,5-2x\le0;2x+3,5\le0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x\le3,5;2x\ge-3,5\\2x\ge3,5;2x\le-3,5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\le1,75;x\ge-1,75\Rightarrow-1,75\le x\le1,75\\x\ge1,75;x\le-1,75\text{(Vô lý)}\end{cases}}\)
Vậy \(MinB=7\Leftrightarrow-1,75\le x\le1,75\)