\(A=\frac{x^2-3x+4}{\left(x-1\right)^2}=\frac{x^2+x-4x+4}{\left(x-1\right)^2}=\frac{x\left(x+1\right)+4\left(x+1\right)}{\left(x+1\right)^2}=\frac{\left(x+1\right)\left(x+4\right)}{\left(x+1\right)^2}=\frac{x+4}{x+1}\)
ĐKXĐ: x khác 1
\(A=\frac{x^2-3x+4}{x^2-2x+1}=\frac{x^2-2x+1-x+1+2}{x^2-2x+1}=1+\frac{-\left(x-1\right)}{\left(x-1\right)^2}+\frac{2}{\left(x-1\right)^2}\)
\(=1+\frac{-1}{x-1}+\frac{1}{\left(x-1\right)^2}+\frac{1}{\left(x-1\right)^2}\)
đặt \(m=\frac{1}{x-1}\Rightarrow A=1+-m+2m^2=2.\left(m^2-\frac{m.1}{2}+\frac{1}{16}\right)+\frac{7}{8}\)
\(A=2.\left(m-\frac{1}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\)
dấu = xảy ra khi \(m-\frac{1}{4}=0\)
\(\Rightarrow m=\frac{1}{4}=\frac{1}{x-1}\Rightarrow x=5\)
p/s: ko chắc lắm, 60% thôi >:
lỗi:
dòng thứ 4: \(1+\left(-m\right)\)quên dấu ngoặc =.=
thiếu kết luận. Vậy MinA\(=\frac{7}{8}\Leftrightarrow x=5\)
sorry :(