\(A=5x^2-25x+35+7y^8\)
\(=5\left(x^2-5x+7\right)+7y^8\)
\(=5\left(x^2-5x+\frac{25}{4}+\frac{3}{4}\right)+7y^8\)
\(=5\left[\left(x-\frac{5}{2}\right)^2+\frac{3}{4}\right]+7y^8\)
\(=5\left(x-\frac{5}{2}\right)^2+\frac{15}{4}+7y^8\ge\frac{15}{4}\)
\(\Leftrightarrow x=\frac{5}{2};y=0\)