c/ \(C=\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}\)
\(=\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+5\right)^2}\)
\(=|3-x|+|x+5|\ge|3-x+x+5|=8\)
d/ \(D=\sqrt{x^2-6x+9}+\sqrt{4x^2+24x+36}\)
\(=\sqrt{\left(x-3\right)^2}+\sqrt{4\left(x+3\right)^2}\)
\(=|3-x|+|x+3|+|x+3|\ge|3-x+x+3|+0=6\)
e/ \(2E=\sqrt{x^2}+2\sqrt{x^2-2x+1}\)
\(=\sqrt{x^2}+2\sqrt{\left(x-1\right)^2}\)
\(=|x|+|1-x|+|x-1|\ge|x+1-x|+0=1\)
\(\Rightarrow E\ge\frac{1}{2}\)