thay 1 = x2 + y2 vào P ta được:
\(P=\frac{2x^2+12xy}{x^2+y^2+2xy+2y^2}=\frac{2x^2+12xy}{x^2+2xy+3y^2}\)
+) Xét y = 0 => P = 2 (1)
+) Xét y khác 0:
Chia cả tử và mẫu của P cho y2 ta được \(P=\frac{2\left(\frac{x}{y}\right)^2+12.\frac{x}{y}}{\left(\frac{x}{y}\right)^2+2.\frac{x}{y}+3}\)
Đặt \(\frac{x}{y}=t\)
=> \(P=\frac{2t^2+12t}{t^2+2t+3}\) <=> \(Pt^2+2Pt+3P=2t^2+12t\)
<=> (P - 2)t2 + (2P - 12)t + 3P = 0 (*) (P khác 2)
Để có nghiệm x;y <=> (*) có nghiệm t
<=> \(\Delta\)' \(\ge\) 0
<=> (P - 6)2 - (P - 2).3P \(\ge\) 0
<=> -2P2 - 6P + 36 \(\ge\) 0 <=> -P2 - 3P + 18 \(\ge\) 0 <=> (P + 6)(3 - P) \(\ge\) 0
<=> -6 \(\le\)P \(\le\) 3 (2)
(1)(2) => Max P = 3 ; min P = -6
max P = 3 : thay vào (*) => t = ... => x; y ..
tương tự với min P = -6 .....