1) \(A=4x-x^2+3\)
\(A=-\left(x^2-4x-3\right)\)
\(A=-\left(x^2-4x+4\right)+7\)
\(A=-\left(x-2\right)^2+7\)
Mà: \(-\left(x-2\right)^2\le0\forall x\) nên: \(A=-\left(x-2\right)^2+7\le7\)
Dấu "=" xảy ra:
\(-\left(x-2\right)^2+7=7\)
\(\Rightarrow x=2\)
Vậy: \(A_{max}=7\) khi \(x=2\)
2) \(B=x-x^2\)
\(B=-x^2+x\)
\(B=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}\)
\(B=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\)
Mà: \(-\left(x-\dfrac{1}{2}\right)^2\le0\forall x\) nên \(B=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
Dấu "=" xảy ra:
\(-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}=\dfrac{1}{4}\)
\(\Rightarrow x=\dfrac{1}{2}\)
Vậy: \(B_{max}=\dfrac{1}{4}\) với \(x=\dfrac{1}{2}\)