P= -(x2 + 2.3x/2 + 9/4) +3 +9/4
GTLN: P = 21/4
\(P=-\left(x^2+3x-3\right)=-\left(x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{21}{4}\right)=-\left[\left(x+\frac{3}{2}\right)^2-\frac{21}{4}\right]=-\left(x+\frac{3}{2}\right)^2+\frac{21}{4}\)
Do \(\left(x+\frac{3}{2}\right)^2\ge0,x\in R\)
nên \(-\left(x+\frac{3}{2}\right)^2\le0,x\in R\)
mà \(-\left(x+\frac{3}{2}\right)^2+\frac{21}{4}\le\frac{21}{4},x\in R\)
VẬy \(Max_P=\frac{21}{4}\)khi \(x+\frac{3}{2}=0\Rightarrow x=-\frac{3}{2}\)