Giả sử x và y là những số không âm thay đổi thỏa mãn điều kiện x2+y2=1
a, chứng minh rằng \(1\le x+y\le\sqrt{2}\)
b, Tìm GTLN và GTNN của \(P = {\sqrt{1+2x}+\sqrt{1+2y}}\)
cho x,y là 2 số thực dương thỏa mãn \(|x-2y|\le\frac{1}{\sqrt{x}}\) và \(|y-2x|\le\frac{1}{\sqrt{y}}\). tìm gtln của P=x2+2y
TÌM GTNN CỦA HÀM SỐ SAU:
a) y=\(\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}\)
TÌM GTLN CỦA HÀM SỐ SAU:
b)y= \(x^2\sqrt{9-x^2}với-3\le x\le3\)
c)y=\(\left(1-x\right)^3\left(1+3x\right)với\dfrac{-1}{3}\le x\le1\)
Tìm GTNN của
\(A=\sqrt{4x^2+4x+1}+\sqrt{9x^2-12x+4}\)
\(B=\sqrt{a+3-4\sqrt{a-1}}+\sqrt{a+15-8\sqrt{a-1}}\)
\(C=2x+\sqrt{4-2x^2}\)
Tìm GTLN của
\(D=2x+\sqrt{4-x^2}\)
\(E=\frac{\sqrt{x-1}}{x}\)
\(F=\left(a+x\right)\sqrt{a^2-x^2}\left(0\le x\le a\right)\)
MÌNH CẦN GẤP LẮM GIÚP MÌNH VỚI
Tìm GTLn và GTNN của \(y=3\sqrt{x-1}+4\sqrt{5-x}\) với \(1\le x\le5\)
Bài 1: Cho \(x,y>0\)thỏa mãn \(x^4+y^4=4\).Tìm GTNN \(E=\left(x+\frac{1}{y}\right)^2+\left(y+\frac{1}{x}\right)^2\)
Bài 2: Tìm GTNN và GTLN của\(A=\sqrt{3+x}+\sqrt{6-x}\left(-3\le x\le6\right)\)
Bài 3:Tìm GTLN của \(A=\sqrt{x+1}+\sqrt{y+1}\)biết\(\hept{\begin{cases}x,y\ge-1\\x+y=2\end{cases}}\)
tìm gtln và gtnn của
\(P=\sqrt{1+2a}+\sqrt{1+2b}\)với \(1\le a+b\le\sqrt{2}\)
vs a2+b2=1
giúp mk nhanh nha
Cho \(0\le x\le1\). Tìm GTLN vầ GTNN của biểu thức:
\(M=\sqrt{x-\sqrt{x}+1}+\sqrt{\sqrt{x}-x+1}\)
Cho x,y là hai số thực dương thỏa mãn điều kiện \(|x-2y|\le\frac{1}{\sqrt{x}}\) và \(|y-2x|\le\frac{1}{\sqrt{y}}\)
Tìm giá trị lớn nhất của biểu thức P = x2 + 2y