a) A=x^2-2x+7
=x2-2x+1+6
=(x-1)2+6
vì (x-1)2\(\ge\)với mọi x nên
(x-1)2+6\(\ge\)6
dấu "=" xảy ra khi:
x-1=0
<=>x=1
Vậy GTNN của A là 6 tại x=1
b)B=4x-4x^2
=-4x2+4x-1+1
=-(4x2+4x+1)+1
=-(2x+1)2+1
vì -(2x+1)2\(\le\)0 nên
-(2x+1)2+1\(\le\)1
Dấu "=" xảy ra khi
2x+1=0
<=>x=-1/2
Vậy GTLN của B là 1 tại x=-1/2
a) A = x2 - 2x + 7
=> A = x2 - 2x . 1/2 + (1/2)2 + 27/4
= [x2 - 2x . 1/2 + (1/2)2] + 27/4
= (x - 1/2)2 + 27/4
mà (x - 1/2)2 > 0
=> (x - 1/2)2 + 27/4 > 27/4
Vậy giá trị nhỏ nhất của A = 27/4 tại x = 1/2