\(\text{Cho x,y,z khác 0 thỏa mãn:}\\x+y+z=\dfrac{1}{2}\\\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{1}{xyz}=4\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}>0\\\text{Chứng minh rằng:}\\\left(x^3+y^3\right)\left(y^{2013}+z^{2013}\right)\left(z^{2023}+x^{2023}\right)=0\)