Ta có: \(x^2-2x+y^2-4y+7\)
\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+2\)
Vì:\(\left(x-1\right)^2+\left(y-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\forall x\)
Dấu = xảy ra khi: \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy:GTNN của bt là 2 tại x=1,y=2