\(\frac{ab}{a+b}=\frac{10a+b}{a+b}=\frac{a+b+9a}{a+b}=1+\frac{9a}{a+b}=1+\frac{9}{1+\frac{b}{a}}\)
Để \(\frac{ab}{a+b}\) nhỏ nhất thì \(\frac{9}{1+\frac{b}{a}}\) nhỏ nhất => \(1+\frac{b}{a}\) lớn nhất => \(\frac{b}{a}\) lớn nhất mà a; b là các chữ số
=> b = 9 ; a = 1
Vậy \(\frac{ab}{a+b}\) lớn nhất bằng 19/10