\(\Leftrightarrow\) \(x^2+x+\frac{3}{2}\)
\(\Leftrightarrow\)\(x^2+2\cdot\frac{1}{2}x+\frac{1}{4}+\frac{5}{4}\)
\(\Leftrightarrow\)\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)\(\ge\)\(\frac{5}{4}\)
Vậy GTNN là \(\frac{5}{4}\)Khi \(\left(x+\frac{1}{2}\right)^2=0\)\(\Leftrightarrow\)\(\left(x+\frac{1}{2}\right)=0\)\(\Leftrightarrow\)\(x=\frac{-1}{2}\)
Đúng 0
Bình luận (0)
A=x(x+1)+3/2=x^2+x+3/2=x^2+2.1/2.x+1/4+5/4=(x+1/2)^2+5/4>=5/4
Dấu"=" xảy ra <=> (x+1/2)^2=0 <=> x=-1/2
Vậy Min A= 5/4 tại x=-1/2
Đúng 0
Bình luận (0)