a) $A=x(x+1)+x+2\\=x^2+x+x+2\\=x^2+2x+1+1\\=(x+1)^2+1$
Ta có: $(x+1)^2\ge 0\forall x$
$\Leftrightarrow A\ge 1$
$\Rightarrow \min A=1$
$\Rightarrow$ Dấu "=" xảy ra khi $x+1=0$ hay $x=-1$
Vậy $A$ đạt GTNN là $1$ tại $x=-1$
b/ Ta có: $|x-1|\ge 0\forall x$
$\Leftrightarrw B\ge 3$
$\Rightarrow \min B=3$
$\Rightarrow$ Dấu "=" xảy ra khi $x-1=0$ hay $x=1$
Vậy $B$ đạt GTNN là $3$ tại $x=1$