Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cao Quỳnh Nga

tìm giá trị nhỏ nhất của biểu thức:

\(x^2+y^2-x+6y+10\)

tìm giá trị lớn nhất của biểu thức

\(2x-2x^2-5\)

giúp mik với mik tik cho :)

Nguyễn Huệ Lam
26 tháng 6 2017 lúc 9:50

Câu b mình viết nhầm dấu \(\ge\)đáng lẽ đúng phải là \(\le\)

Nguyễn Huệ Lam
26 tháng 6 2017 lúc 9:45

a)

\(A=x^2+y^2-x+6y+10.\)

\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy \(MinA=\frac{3}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}}\)

b)

\(B=2x-2x^2-5\)

\(=-2\left(x^2-x+\frac{1}{4}\right)+2.\frac{1}{4}-5\)

\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

Vậy \(MaxB=-\frac{9}{2}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

Lê Minh Anh
26 tháng 6 2017 lúc 9:46

a) x2 + y2 - x + 6y + 10 = (x2 - x + 1/4) + (y2 + 6y + 9) + 3/4

=(x - 1/2)2 + (y + 3)+ 3/4 \(\ge\)3/4

Dấu "=" xảy ra <=> (x - 1/2)2 = 0 và (y + 3)2 = 0   <=> x = 1/2 ; y = -3

Vậy GTNN của bt đã cho là 3/4 khi x = 1/2 và y = -3

b) A = 2x - 2x2 - 5

<=> 2A = 2(2x -  2x2 - 5)

<=> 2A = -4x2 + 4x - 5

<=> 2A = -(4x2 - 4x + 1) - 4

<=> 2A = -(2x - 1)2 - 4\(\le\)-4

<=> A \(\le\)-2

Dấu "=" xảy ra <=>: (2x - 1)2 = 0   <=> x = 1/2

Vậy GT LN của bt đã cho là -2 khi và chỉ khi x = 1/2

Cao Quỳnh Nga
26 tháng 6 2017 lúc 10:05

@Nguyễn Huệ Lam đâu có thấy


Các câu hỏi tương tự
Phan Hải Nam
Xem chi tiết
Thanh Loan Trần
Xem chi tiết
Nguyễn Thị Tuyết Ngân
Xem chi tiết
Trần Trọng Quang
Xem chi tiết
Hoàng Ninh
Xem chi tiết
Kudora Sera
Xem chi tiết
Alexandra Alice
Xem chi tiết
Nguyễn Kim Ngân
Xem chi tiết
White Silver
Xem chi tiết