Để D có giá trị nhỏ nhất thì x^2 ;4y^2 ;2xy; 6y; 10(x-y) phải có giá trị nhỏ nhất
Mà x^2 >0 hoặc x^2=0 ( với mọi x)
4y^2 >0 hoặc 4y^2 =0 (với mọi y)
=> x^2 =0 suy ra x =0 (4)
4y^2 =0 suy ra y =0 (5)
ta có x= 0 ;y=0 => 6y =0 (1)
2xy = 0 (2)
10(x-y)=0 (3)
Từ (1);(2);(3);(4);(5) => D= 0+0-0-0-0+32
=> D= 32
k minh nha
Ta có:
\(D=x^2+4y^2-2xy-6y-10\left(x-y\right)+32\)
\(=x^2+4y^2-2xy+4y-12x+32\)
\(=\left(x^2+y^2+36-2xy-12x+12y\right)+\left(3y^2-8y+\frac{16}{3}\right)-\frac{28}{3}\)
\(=\left(x-y-6\right)^2+\left(\sqrt{3}y-\frac{4}{\sqrt{3}}\right)^2-\frac{28}{3}\ge-\frac{28}{3}\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-6=0\\\sqrt{3}y-\frac{4}{\sqrt{3}}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{22}{3}\\y=\frac{4}{3}\end{cases}}\)
Vậy \(D_{min}=-\frac{28}{3}\Leftrightarrow\hept{\begin{cases}x=\frac{22}{3}\\y=\frac{4}{3}\end{cases}}\)