\(M=x^2+x+10\)
\(=x^2+x+\frac{1}{4}+\frac{39}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}\)
Vậy \(M_{min}=\frac{39}{4}\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
\(M=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{39}{4}\)
\(M=\left(x+\frac{1}{2}\right)^2+\frac{39}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{39}{4}\ge0\)
\(\left(x+\frac{1}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}\)\(\Rightarrow M\ge\frac{39}{4}\)
Dấu "=" xảy ra: \(\left(x+\frac{1}{2}\right)^2=0\)
\(x+\frac{1}{2}=0\)
\(x=-\frac{1}{2}\)
\(M=x^2+x+10\)
\(M=x^2+x+\frac{1}{4}+\frac{39}{4}\)
\(M=\left(x+\frac{1}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}\)
Dấu '' = '' xảy ra
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy...........