\(A=\frac{x^2-x+2}{x^2}\)
\(A=\frac{x^2}{x^2}-\frac{x}{x^2}+\frac{2}{x^2}\)
\(A=1-\frac{1}{x}+2\cdot\left(\frac{1}{x}\right)^2\)
Đặt \(\frac{1}{x}=a\)
\(A=1-a+2a^2\)
\(A=2\left(a^2-\frac{a}{2}+\frac{1}{2}\right)\)
\(A=2\left(a^2-2\cdot a\cdot\frac{1}{4}+\frac{1}{16}+\frac{7}{16}\right)\)
\(A=2\left[\left(a-\frac{1}{4}\right)^2+\frac{7}{16}\right]\)
\(A=2\left(a-\frac{1}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\forall a\)
Dấu "=" xảy ra \(\Leftrightarrow a=\frac{1}{4}\Leftrightarrow\frac{1}{x}=\frac{1}{4}\Leftrightarrow x=4\)