Bài 3: Những hằng đẳng thức đáng nhớ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Công Mạnh Trần

Tìm giá trị nhỏ nhất của biểu thức sau
A=x2-10x+3
B=x2+6x-5
C=x(x-3)
D=x2+y2-4x+20
E=x2+2y2-2xy+4x-6y+100
F=2x2+y2-2xy+4x+100
Tìm giá trị lớn nhất của biểu thức sau
A=-x2-12x+3
B=7-4x2+4x
C=4xy-x2+6y2-2x-6y+50

Dung Nguyễn Thị Xuân
13 tháng 8 2018 lúc 16:18

\(A=x^2-10x+3=\left(x^2-10x+25\right)-22=\left(x-5\right)^2-22\ge-22\)

Vậy GTNN của A là -22 khi x = 5

\(B=x^2+6x-5=\left(x^2+6x+9\right)-14=\left(x+3\right)^2-14\ge-14\)

Vậy GTNN của B là -14 khi x = -3

\(C=x\left(x-3\right)=x^2-3x=\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)

Vậy GTNN của C là \(-\dfrac{9}{4}\) khi x = \(\dfrac{3}{2}\)

\(D=x^2+y^2-4x+20=\left(x^2-4x+4\right)+y^2+16=\left(x-2\right)^2+y^2+16\ge16\)

Vậy GTNN của D là 16 khi x = 2; y = 0

\(E=x^2+2y^2-2xy+4x-6y+100\)

\(E=\left(x^2+y^2+4-2xy+4x-4y\right)+\left(y^2-2y+1\right)+95\)

\(E=\left(x-y+2\right)^2+\left(y-1\right)^2+95\ge95\)

Vậy GTNN của E là 95 khi x = -1 ; y = 1

\(F=2x^2+y^2-2xy+4x+100\)

\(F=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)+96\)

\(F=\left(x-y\right)^2+\left(x+2\right)^2+96\ge96\)

Vậy GTNN của F là 96 khi x = -2; y = -2

Dung Nguyễn Thị Xuân
13 tháng 8 2018 lúc 16:24

\(A=-x^2-12x+3=-\left(x^2+12x+36\right)+39=-\left(x+6\right)^2+39\le39\)

Vậy GTLN của A là 39 khi x = -6

\(B=7-4x^2+4x=-\left(4x^2-4x+1\right)+8=-\left(2x-1\right)^2+8\le8\)

Vậy GTLN của B là 8 khi x = \(\dfrac{1}{2}\)


Các câu hỏi tương tự
Chau
Xem chi tiết
Huyền Trần Ngọc
Xem chi tiết
Lê Thu Hiền
Xem chi tiết
Hạ Hạ
Xem chi tiết
Vinh Thuy Duong
Xem chi tiết
Nguyễn Minh Dũng
Xem chi tiết
hoangtuvi
Xem chi tiết
Kwalla
Xem chi tiết