Vì \(\left(x^2-x+1\right)^2\ge0\forall x\)
\(\Rightarrow M\ge0\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x^2-x+1=0\)
\(\left(x^2-x+1\right)^2\ge0;M_{min}\Leftrightarrow\left(x^2-x+1\right)^2=0\Leftrightarrow x^2-x+1=0\Leftrightarrow x\left(x-1\right)=-1\)
\(M_{min}=0\)
\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(\Rightarrow M=\left(x^2-x+1\right)^2\ge\left(\frac{3}{4}\right)^2=\frac{9}{16}\)
Dấu "=" xảy ra khi \(x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
Vậy GTNN của M là \(\frac{9}{16}\) khi \(x=\frac{1}{2}\)