Ta có : \(A=\left(x^2-2x+1\right)+\left(4y^2+10y+\frac{25}{4}\right)-\frac{9}{4}\)
\(=\left(x-1\right)^2+\left(2y+\frac{5}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\frac{5}{4}\end{matrix}\right.\)
Vậy : Min A =\(-\frac{9}{4}\) tại \(x=1,y=-\frac{5}{4}\)