\(\sqrt{2x^2+2y^2}\ge\sqrt{\left(x+y\right)^2}=10\)
Đạt được khi x = y = 5
\(\sqrt{2x^2+2y^2}\ge\sqrt{\left(x+y\right)^2}=10\)
Đạt được khi x = y = 5
cho cac so thuc x,y thoa man
\(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\)
tìm giá trị nhỏ nhất của biểu thức:
A=\(x^3+2xy-2y^2+2y+10\)
Cho x, y là 2 số thực dương. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{x+y}{\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}}\)
Giúp mình với help :((
Cho các số dương x,y,z thỏa mãn : x + y + z = 1
Tìm giá trị nhỏ nhất của biểu thức:
M = \(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\)
Cho các số thực dương x, y, z thõa mãn \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{xyz}\). tìm giá trị nhỏ nhất của biểu thức P=\(\frac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2z^2+xz+2x^2}+z\sqrt{2x^2+xy+2y^2}\right)\)
tìm giá trị nhỏ nhất của A=\(\sqrt{2x^2+2y^2}\)biết x+y=1
Cho x, y, z là 3 số thực dương. Tìm giá trị nhỏ nhất của biểu thức: \(\frac{\sqrt{x^2-xy+y^2}}{x+y+2z}+\frac{\sqrt{y^2-yz+z^2}}{y+z+2x}+\frac{\sqrt{z^2-zx+x^2}}{z+x+2y}\)
Cho hai số dương x, y. Tìm giá trị nhỏ nhất của biểu thức
\(S = {x+y\over\sqrt{x(2x+y)}+\sqrt{y(2y+x)}}\)
Cho hai số dương x, y. Tìm giá trị nhỏ nhất của biểu thức
\(S = {x+y \over \sqrt{x(2x+y)}+\sqrt{y(2y+x)}}\)
Cho x,y,z là ba số thực dương .Tìm giá trị nhỏ nhất của biểu thức :
\(S=\frac{\sqrt{x^2-xy+y^2}}{x+y+2z}+\frac{\sqrt{y^2-yz+z^2}}{y+z+2x}+\frac{\sqrt{z^2-zx+x^2}}{z+x+2y}\)