Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Thảo Linh

tìm giá trị nhỏ nhất của biểu thức 

A = (3x+2)2 + x2 + y2 - 2xy - 2x + 2y + 2015

Xyz OLM
28 tháng 10 2020 lúc 20:56

Ta có A = (3x + 2)2 + (x2 + y2 - 2xy) - (2x - 2y) + 2015

= (3x + 2)2 + (x - y)2 - 2(x - y) + 1 +  2014

= (3x + 2)2 + (x - y - 1)2 + 2014 \(\ge\)2014

Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x+2=0\\x-y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{2}{3}\\y=x-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{2}{3}\\y=-\frac{5}{3}\end{cases}}\)

Vậy Min A = 2015 <=> x = -2/3 ; y = -5/3

Khách vãng lai đã xóa
Nobi Nobita
28 tháng 10 2020 lúc 20:56

\(A=\left(3x+2\right)^2+x^2+y^2-2xy-2x+2y+2015\)

\(=\left(3x+2\right)^2+\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+2014\)

\(=\left(3x+2\right)^2+\left(x-y\right)^2-2\left(x-y\right)+1+2014\)

\(=\left(3x+2\right)^2+\left(x-y-1\right)^2+2014\)

Vì \(\left(3x+2\right)^2\ge0\forall x\)\(\left(x-y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(3x+2\right)^2+\left(x-y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(3x+2\right)^2+\left(x-y-1\right)^2+2014\ge2014\forall x,y\)

hay \(A\ge2014\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}3x+2=0\\x-y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=-2\\y=x-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{3}\\y=\frac{-5}{3}\end{cases}}\)

Vậy \(minA=2014\)\(\Leftrightarrow x=-\frac{2}{3}\)và \(y=-\frac{5}{3}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Tuyết Ly
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Nguyễn Huy Bình
Xem chi tiết
Tớ Chưa Bồ
Xem chi tiết
๖ۣۜŠóї 乂áɱッ
Xem chi tiết
phamducluong
Xem chi tiết
NgVH
Xem chi tiết
VuHanhTrang
Xem chi tiết
Hoàng Ninh
Xem chi tiết