\(A=\sqrt{2x^2+2y^2}\ge\sqrt{\left(x+y\right)^2}=1\)
Đạt được khi x = y = 0,5
ko biet nua
quen mat ieu roi !! hee
\(A=\sqrt{2x^2+2y^2}\ge\sqrt{\left(x+y\right)^2}=1\)
Đạt được khi x = y = 0,5
ko biet nua
quen mat ieu roi !! hee
Tìm giá trị nhỏ nhất của biểu thức A= \(\sqrt{2x^2+2y^2}\)biết \(x+y=10\)
Cho các số thực dương x,y,z thõa mãn \(\sqrt{xy}+\sqrt{xz}+\sqrt{yz}=\sqrt{xyz}\)
Tìm giá trị nhỏ nhất của biểu thức
P=\(\dfrac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2x^2+xz+2z^2}+z\sqrt{2y^2+xy+2x^2}\right)\)
cho X, y>=0 sao cho \(X^2\)+\(Y^2\)=1.
Tìm giá trị nhỏ nhất và giá trị lớn nhất của A=\(\sqrt{2X+1}\)+\(\sqrt{2Y+1}\)
Giúp mình với help :((
Cho các số dương x,y,z thỏa mãn : x + y + z = 1
Tìm giá trị nhỏ nhất của biểu thức:
M = \(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\)
Cho các số thực dương x, y, z thõa mãn \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{xyz}\). tìm giá trị nhỏ nhất của biểu thức P=\(\frac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2z^2+xz+2x^2}+z\sqrt{2x^2+xy+2y^2}\right)\)
CHO CAC SO DUONG x,y,z THOA MAN :x+y+z=1
tìm giá trị nhỏ nhất
M=\(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\)
Cho x,y là 2 số dương thỏa mãn x+y=1
Tìm giá trị nhỏ nhất của biểu thức P=\(\frac{x+2y}{\sqrt{1-x}}\)+\(\frac{y+2x}{\sqrt{1-y}}\)
cho x, y, z dương thỏa mãn: \(xy+yz+ca=3\). Tìm giá trị nhỏ nhất của thức: \(P=\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\)
Tìm giá trị nhỏ nhất của: \(A=\sqrt{x^2-6x+2y^2+4y+20}+\sqrt{x^2+2x+5}\)