Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nhocanime

Tìm giá trị nhỏ nhất của a + b, nếu a và b là hai số nguyên dương và \(\frac{1}{2a}+\frac{1}{3a}+\frac{1}{4a}=\frac{1}{b^2-2b}\)

+ cách giải

alibaba nguyễn
7 tháng 4 2017 lúc 14:34

Ta có:

\(\frac{1}{2a}+\frac{1}{3a}+\frac{1}{4a}=\frac{1}{b^2-2b}\)

\(\Leftrightarrow13b^2-26b-12a=0\)

\(\Leftrightarrow12\left(a+b\right)=13b^2-14b\)

\(\Leftrightarrow a+b=\frac{13b^2-14b}{12}\)

\(\Leftrightarrow a+b=b^2-b+\frac{b^2-2b}{12}=b^2-b+\frac{b\left(b-2\right)}{12}\)

Dễ thấy b phải là số chẵn (1)

để \(\frac{b\left(b-2\right)}{2.2.3}\) nguyên thì

\(\Rightarrow\orbr{\begin{cases}b⋮3\\b-2⋮3\end{cases}}\)(2)

Từ (1) và (2) \(\Rightarrow\orbr{\begin{cases}b=6k\\b-2=6k\end{cases}\left(k\ge1\right)}\)

Với \(b=6k\) thế vào ta được

\(a+b=\frac{13\left(6k\right)^2-14.\left(6k\right)}{12}=36k^2-7k\)

Dễ thấy hàm số \(f\left(k\right)=39k^2-7k\) là hàm đồng biết với \(k\ge1\)

Từ đây ta có a + b nhỏ nhất khi k nhơ nhất hay \(k=1\)

\(\Rightarrow\hept{\begin{cases}b=6\\a=26\\a+b=32\end{cases}}\)

Tương tự cho trường hợp \(b-2=6k\) sẽ tìm được GTNN của a + b

PS: Vì m thích làm sự đơn điệu của hàm số thôi. Nếu các b có cách khác thì cứ làm cho gọn nhé :)

Mạnh Lê
7 tháng 4 2017 lúc 22:54

\(\Rightarrow a=26\)\(b=6\)Còn cách làm thì giống như Bạn alibaba nguyễn đó bạn 

~ Chúc bạn học giỏi ~~~


Các câu hỏi tương tự
Mờ Lem
Xem chi tiết
Đoàn Phương Linh
Xem chi tiết
Thạch Hoàng Kim
Xem chi tiết
Nguyễn Khoa Nguyên
Xem chi tiết
Ái Kiều
Xem chi tiết
Phạm Thị Hằng
Xem chi tiết
꧁WღX༺
Xem chi tiết
Phong Du
Xem chi tiết
Pham Duong
Xem chi tiết