Ta có:
\(\frac{1}{2a}+\frac{1}{3a}+\frac{1}{4a}=\frac{1}{b^2-2b}\)
\(\Leftrightarrow13b^2-26b-12a=0\)
\(\Leftrightarrow12\left(a+b\right)=13b^2-14b\)
\(\Leftrightarrow a+b=\frac{13b^2-14b}{12}\)
\(\Leftrightarrow a+b=b^2-b+\frac{b^2-2b}{12}=b^2-b+\frac{b\left(b-2\right)}{12}\)
Dễ thấy b phải là số chẵn (1)
để \(\frac{b\left(b-2\right)}{2.2.3}\) nguyên thì
\(\Rightarrow\orbr{\begin{cases}b⋮3\\b-2⋮3\end{cases}}\)(2)
Từ (1) và (2) \(\Rightarrow\orbr{\begin{cases}b=6k\\b-2=6k\end{cases}\left(k\ge1\right)}\)
Với \(b=6k\) thế vào ta được
\(a+b=\frac{13\left(6k\right)^2-14.\left(6k\right)}{12}=36k^2-7k\)
Dễ thấy hàm số \(f\left(k\right)=39k^2-7k\) là hàm đồng biết với \(k\ge1\)
Từ đây ta có a + b nhỏ nhất khi k nhơ nhất hay \(k=1\)
\(\Rightarrow\hept{\begin{cases}b=6\\a=26\\a+b=32\end{cases}}\)
Tương tự cho trường hợp \(b-2=6k\) sẽ tìm được GTNN của a + b
PS: Vì m thích làm sự đơn điệu của hàm số thôi. Nếu các b có cách khác thì cứ làm cho gọn nhé :)
\(\Rightarrow a=26\), \(b=6\)Còn cách làm thì giống như Bạn alibaba nguyễn đó bạn
~ Chúc bạn học giỏi ~~~