ta có: A = 2x2 + 10x + 1
A = 2.(x2 + 5x + 1/2)
A = 2.(x2 + 2x.5/2 + 25/4 -23/4)
A = 2.[ (x+5/2)2 -23.4 ]
A = 2.(x+5/2)2 - 23/2
Để A nhỏ nhất
\(\Rightarrow2.\left(x+\frac{5}{2}\right)^2\) nhỏ nhất
mà \(2.\left(x+\frac{5}{2}\right)^2\ge0\)
Dấu "=" xảy ra khi:
2.(x+5/2) = 0
x+5/2 = 0
x = -5/2
=> giá trị nhỏ nhất của A = 2.(-5/2)2 + 10.(-5/2) + 1 = -23/2