cho tam giác ABC vuông tại A,AB=6cm,AC=8cm.Kẻ đường cao AH,trung tuyến AM
a)Tính BC,HA,HB,HC
b)tính sinB, cosB,tanB,cotB
c)tínhBD,CD
d)tính sin góc ADH, cos góc ADH,tan góc ADH,cot góc ADH
cho tam giác ABC vuông tại A,AB=6cm,AC=8cm.Kẻ đường cao AH,tia phân giác AD
a)Tính BC,HA,HB,HC
b)tính sinB, cosB,tanB,cotB
c)tínhBD,CD
d)tính sin góc ADH, cos góc ADH,tan góc ADH,cot góc ADH
Cho tam giác ABC vuông tại A,AB=21cm,AC=28cm.Kẻ đường cao AH,tia phân giác AD
a)Tính BC,HA,HB,HC
b)tính sinB, cosB,tanB,cotB
c)tínhBD,CD
d)tính sin góc ADH, cos góc ADH,tan góc ADH,cot góc ADH
Cho tam giác ABC vuông tại A,AB=21cm,AC=28cm.Kẻ đường cao AH,tia phân giác AD
a)Tính BC,HA,HB,HC
b)tính sinB, cosB,tanB,cotB
c)tínhBD,CD
d)tính sin góc ADH, cos góc ADH,tan góc ADH,cot góc ADH
cho tam giác ABC vuông tại A,AB=6cm,AC=8cm.Kẻ đường cao AH,trung tuyến AM
a)Tính BC,HA,HB,HC
b)tính sinB, cosB,tanB,cotB
c)tínhBD,CD
d)tính sin góc ADH, cos góc ADH,tan góc ADH,cot góc ADH
Cho biểu thức\(B=2x+\frac{8}{x-3}-5\)
a>Tìm giá trị nhỏ nhất của biểu thức B.
b>Tìm giá trị của x để bểu thức B có giá trị nhỏ nhất.
Cho tam giác vuông ở A . Biết sinB = \(\frac{3}{5}\) . Tính cosB , tgB , cotgB
Cho đoạn BC cố định có độ dài 2a với a > 0 và một điểm A di động sao cho góc BAC = \(90^o\). Kẻ AH vuông góc với BC tại H. Gọi HE và HF lần lượt là đường cao của tam giác ABH và tam giác ACH.
1. Chứng minh rằng: \(BC^2=3AH^2+BE^2+CF^2\)
2. Tìm điều kiện cùa tam giác ABC để tổng \(BE^2+CF^2\) đạt giá trị nhỏ nhất
Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.