a,Đặt A= \(2x^2+2xy+y^2-2x+2y+15\)
\(=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(x^2-4x+4\right)+10\)
\(=\left(x+y+1\right)^2+\left(x-2\right)^2+10\)
Vì \(\left(x+y+1\right)^2\ge0;\left(x-2\right)^2\ge0\Rightarrow\left(x+y+1\right)^2+\left(x-2\right)^2+10\ge0\)
hay \(A\ge10\)
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x+y+1\right)^2=0\\\left(x-2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+y+1=0\\x=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)
Vậy min A=10 khi x=2; y=-3
b/ \(=\left(x^2-2xy+y^2\right)+\left(3x^2-12x+12\right)+\left(8y^2-32y+32\right)-4\)
=\(\left(x-y\right)^2+3\left(x-2\right)^2+8\left(y-2\right)^2-4\ge-4\)
Vậy Min =-4 khi x=y=2