\(A=2x^2+2y^2+5z^2-2xy-4yz-4x-2z+15\)\(A=\left(x^2-2xy+y^2\right)+\left(x^2-4x+4\right)+\left(y^2-4yz+4z^2\right)+\left(z^2-2z+1\right)+10\)\(A=\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2z\right)^2+\left(z-1\right)^2+9\ge10\)
Vậy: \(Min_A=10\Leftrightarrow x=y=2;z=1\)