\(B=\frac{42-y}{y-15}=\frac{15+27-y}{y-15}=\frac{27-\left(y-15\right)}{y-15}=\frac{27}{y-15}-1\)
Đặt \(D=\frac{27}{y-15}\)
Ta có: \(B_{min}\Leftrightarrow D_{min}\)
ĐK: \(y\ne15\),xét 2 TH:
TH1:Nếu y<15 thì y-15<0,mà 27>0=>D<0
TH2:Nếu y>15 thì y-15>0;mà 27>0=>D>0
Như vậy,muốn \(D_{min}\) ta phải chọn y sao cho D<0,tức là chọn y<15
Khi đó \(D_{min}\) khi số đối của \(D_{max}\Leftrightarrow\left(\frac{27}{15-y}\right)_{max}\Leftrightarrow\left(15-y\right)_{min}\) (do 27 là hằng số dương)
Có 15-y>0,mà \(x\in Z\) nên \(\left(15-y\right)_{min}\Leftrightarrow15-y=1\Leftrightarrow y=14\) (thỏa mãn ĐK)
Vậy \(B_{min}=\frac{42-14}{14-14}=-28\) tại y=14