\(H=\left(3x-2y\right)^2-\left(4y-6x\right)^2-\left|xy-24\right|\)
\(=\left(3x-2y\right)^2-4\left(3x-2y\right)^2-\left|xy-24\right|\)
\(=-3\left(3x-2y\right)^2-\left|xy-24\right|\)
\(=-3\left[\left(3x-2y\right)^2+\left|xy-24\right|\right]\le0\)
Dấu "=" khi \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\xy=24\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\y=6\end{cases}}\)hoặc \(\hept{\begin{cases}x=-4\\y=-6\end{cases}}\)
\(H=\left(3x-2y\right)^2-\left(4x-6x\right)^2-\left|xy-24\right|\)
\(=\left(3x-2y\right)^2-4.\left(3x+2y\right)^2-\left|xy-24\right|\)
\(=-3.\left(3x-2y\right)^2-\left|xy-24\right|\)
\(=-3.\left[\left(3x-2y\right)^2+\left|xy-24\right|\right]\le0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\xy=24\end{cases}=>\hept{\begin{cases}x=4\\y=6\end{cases}or\hept{\begin{cases}x=-4\\x=-6\end{cases}}}}\)