Có \(\sqrt{\frac{x}{\sqrt[]{3x+yz}}}=\sqrt[]{\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}}\)
Làm tương tự với 2 cái còn lại
Ta sẽ dùng bđt cô si mở rộng: (a+b+c)^2<=3(a^2+b^2+c^2)
Đặt A là biểu thức để bài cho
Có A^2<=\(3\left(\frac{x}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}+\frac{y}{\sqrt[]{\left(y+x\right)\left(y+z\right)}}+\frac{z}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\right)\)
Ta có \(\frac{1}{\sqrt{\left(x+y\right)\left(x+z\right)}}< =\frac{1}{2}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\)
nên \(\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}< =\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)
làm tương tự với 2 ngoặc còn lại ta sẽ thấy A^2<=\(\frac{9}{2}\)
hay A<=\(\frac{3}{\sqrt{2}}\)
dấu bằng xảy ra khi x=y=z=1
Chúc bạn học tốt!