a, Ta có: \(B=2x^2+10x-1=2x^2+10x+\dfrac{25}{2}-\dfrac{27}{2}\)
\(=2\left(x^2+2.x.\dfrac{5}{2}+\dfrac{25}{4}\right)-\dfrac{27}{2}\)
\(=2\left(x+\dfrac{5}{2}\right)^2-\dfrac{27}{2}\ge\dfrac{-27}{2}\)
Dấu " = " khi \(2\left(x+\dfrac{5}{2}\right)^2=0\Leftrightarrow x=\dfrac{-5}{2}\)
Vậy \(MIN_B=\dfrac{-27}{2}\) khi \(x=\dfrac{-5}{2}\)
b, Ta có: \(C=5x-x^2=-\left(x^2-2.x.\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{25}{4}\right)\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)
Dấu " = " khi \(-\left(x-\dfrac{5}{2}\right)^2=0\Leftrightarrow x=\dfrac{5}{2}\)
Vậy \(MAX_C=\dfrac{25}{4}\) khi \(x=\dfrac{5}{2}\)