a)
\(A=x^2-4x+1=x^2-2.2x+2^2-3\)
\(=(x-2)^2-3\)
Vì \((x-2)^2\geq 0, \forall x\Rightarrow A\geq 0-3=-3\)
Vậy GTNN của $A$ là $-3$ khi $x=2$
b) \(B=(x-2)(x-6)+7=x^2-6x-2x+12+7\)
\(=x^2-8x+19=(x^2-2.4x+4^2)+3\)
\(=(x-4)^2+3\)
Vì \((x-4)^2\geq 0, \forall x\Rightarrow B\geq 0+3=3\)
Vậy GTNN của $B$ là $3$ khi $x=4$
c)
\(C=4x-x^2=4-(x^2-4x+4)=4-(x-2)^2\)
Vì \((x-2)^2\geq 0\Rightarrow C\leq 4-0=4\)
Vậy GTLN của $C$ là $4$ khi $x=2$
d) \(D=x^2-2x+y^2-4y+16=(x^2-2x+1)+(y^2-4y+4)+11\)
\(=(x-1)^2+(y-2)^2+11\)
Vì \((x-1)^2\geq 0; (y-2)^2\geq 0, \forall x,y\)
\(\Rightarrow D\geq 0+0+11=11\)
Vậy GTNN của $D$ là $11$ khi \(\left\{\begin{matrix} x-1=0\\ y-2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=2\end{matrix}\right.\)
e)
\(E=5x^2+9y^2-12xy-6x+9\)
\(=(4x^2+9y^2-12xy)+(x^2-6x+9)\)
\(=(2x-3y)^2+(x-3)^2\)
Ta thấy \((2x-3y)^2\geq 0, (x-3)^2\geq 0, \forall x,y\)
\(\Rightarrow E\geq 0+0=0\)
Vậy GTNN của $E$ là $0$ khi \(\left\{\begin{matrix} (2x-3y)^2=0\\ (x-3)^2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=3\\ y=2\end{matrix}\right.\)
f)
\(F=2x^2+2y^2+2xy-10x-8y+41\)
\(=(x^2+2xy+y^2)+x^2+y^2-10x-8y+41\)
\(=(x+y)^2-6(x+y)+9+(x^2-4x+4)+(y^2-2y+1)+27\)
\(=(x+y-3)^2+(x-2)^2+(y-1)^2+27\)
Ta thấy:
\((x+y-3)^2\geq 0, (x-2)^2\geq 0, (y-1)^2\geq 0, \forall x,y\)
\(\Rightarrow F\geq 0+0+27=27\)
Vậy GTNN của $F$ là $27$ khi \(\left\{\begin{matrix} x+y-3=0\\ x-2=0\\ y-1=0\end{matrix}\right.\Leftrightarrow x=2; y=1\)