a.
\(f'\left(x\right)=\dfrac{2\left(x-2\right)}{\left(x-1\right)^3}=0\Rightarrow x=2\)
\(\lim\limits_{x\rightarrow\infty}=3\) ; \(\lim\limits_{x\rightarrow1}f\left(x\right)=+\infty\Rightarrow\) hàm ko tồn tại GTLN
\(f\left(2\right)=2< 3\Rightarrow f\left(x\right)_{min}=f\left(2\right)=2\)
b.
\(y=\sqrt{-x^2+2x}\ge0;\forall x\in\left[0;2\right]\)
\(\Rightarrow f\left(x\right)_{min}=0\) khi \(x=\left\{0;2\right\}\)
\(y=\sqrt{1-\left(x-1\right)^2}\le\sqrt{1-0}=1\)
\(\Rightarrow f\left(x\right)_{max}=1\) khi \(x=1\)