Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hoài Thương

Tìm giá trị lớn nhất của các biểu thức sau:

a. A=4 - x^2 + 2x

b. B=4x - X^2

Hoàng Phúc
1 tháng 7 2016 lúc 21:26

\(a,A=4-x^2+2x=4-\left(x^2-2x\right)=4-\left(x^2-2x+1-1\right)\)

\(=4-\left[\left(x-1\right)^2-1\right]=4-\left(x-1\right)^2+1=5-\left(x-1\right)^2\)

\(\left(x-1\right)^2\ge0=>-\left(x-1\right)^2\le0=>5-\left(x-1\right)^2\le5\) (với mọi x)

Dấu "=" xảy ra \(< =>\left(x-1\right)^2=0< =>x=1\)

Vậy MaxA=5 khi x=1

\(b,B=4x-x^2=-x^2+4x=-\left(x^2-4x\right)=-\left(x^2-4x+4-4\right)\)

\(=-\left[\left(x-2\right)^2-4\right]=-\left(x-2\right)^2+4=4-\left(x-2\right)^2\)

\(\left(x-2\right)^2\ge0=>-\left(x-2\right)^2\le0=>4-\left(x-2\right)^2\le4\) (với mọi x)

Dấu "=" xảy ra \(< =>\left(x-2\right)^2=0< =>x=2\)

Vậy MaxB=4 khi x=2

o0o I am a studious pers...
1 tháng 7 2016 lúc 21:24

a) \(4-x^2+2x\)

\(=-\left(x^2-2x-4\right)\)

\(=-\left(x^2-2x+1-5\right)\)

\(=-\left(\left(x-1\right)^2-5\right)\)

\(=5-\left(x-1\right)^2\ge5\)

MIn A = 5 khi \(x-1=0=>x=1\)

b) \(4x-x^2\)

\(=-\left(x^2-4x+4-4\right)\)

\(=>-\left(\left(x-2\right)^2-4\right)\)

\(=4-\left(x-2\right)\ge4\)

MIN B = 4 khi \(x-2=0=>x=2\)

Ủng hộ nha tối rồi


Các câu hỏi tương tự
Hồ Thị Minh Thư
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Thi Thi
Xem chi tiết
mickeymouse1
Xem chi tiết
Nekk Phương
Xem chi tiết
Nguyễn Vân Khánh
Xem chi tiết
tâm nguyễn
Xem chi tiết
nguyen my chi
Xem chi tiết
Nguyễn Phương Anh
Xem chi tiết