\(A=-x^2-4x-4+2=-\left(x+2\right)^2+2\le2\)
\(A_{max}=2\) khi \(x=-2\)
\(B=-2\left(x+\frac{3}{4}\right)^2+\frac{49}{8}\le\frac{49}{8}\)
\(B_{max}=\frac{49}{8}\) khi \(x=-\frac{3}{4}\)
\(C=-x^2-2x+8=-\left(x+1\right)^2+9\le9\)
\(C_{max}=9\) khi \(x=-1\)
\(D=-4x^2+4xy-y^2-4x^2+3=-\left(2x-y\right)^2-4x^2+3\le3\)
\(D_{max}=3\) khi \(\left\{{}\begin{matrix}4x^2=0\\2x-y=0\end{matrix}\right.\) \(\Rightarrow x=y=0\)