Ta có: \(B=-x^2-y^2-xy+2x+3y\)
\(=-\frac14\left(4x^2+4y^2+4xy-8x-12y\right)\)
\(=-\frac14\left\lbrack4x^2+4xy+y^2-8x-4y+3y^2-8y\right\rbrack\)
\(=-\frac14\left\lbrack\left(2x+y\right)^2-4\left(2x+y\right)+4+3y^2-8y-4\right\rbrack\)
\(=\frac{-1}{4}\left\lbrack\left(2x+y-2\right)^2+3\left(y^2-\frac83y-\frac43\right)\right\rbrack\)
\(=\frac{-1}{4}\left\lbrack\left(2x+y-2\right)^2+3\left(y^2-2\cdot y\cdot\frac43+\frac{16}{9}-\frac{16}{9}-\frac43\right)\right\rbrack\)
\(=\frac{-1}{4}\left\lbrack\left(2x+y-2\right)^2+3\left(y^2-2\cdot y\cdot\frac43+\frac{16}{9}-\frac{28}{9}\right)\right\rbrack\)
\(=\frac{-1}{4}\left\lbrack\left(2x+y-2\right)^2+3\left(y-\frac43\right)^2-\frac{28}{3}\right\rbrack\le-\frac14\cdot\frac{-28}{3}=\frac73\forall x\)
Dấu '=' xảy ra khi \(\begin{cases}y-\frac43=0\\ 2x+y-2=0\end{cases}\Rightarrow\begin{cases}y=\frac43\\ 2x=-y+2=-\frac43+2=\frac23\end{cases}\Rightarrow\begin{cases}y=\frac43\\ x=\frac13\end{cases}\)