lx+2017l +lx-2l > 0
Xét :
|x+2017| > 2017 với mọi x . Dấu bằng xảy ra khi và chỉ khi x = 0
|x-2| > 2 với mọi x. Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy giá trị lớn nhất của A \(=\frac{1}{2019}\) khi x = 0
\(A=\frac{1}{\left|x+2017\right|+\left|x-2\right|}\)
TH1 : \(x\ge2\)\(\Rightarrow\left|x+2017\right|=x+2017\)
\(\left|x-2\right|=x-2\)
\(\Rightarrow A=\frac{1}{2x+2015}\)Do \(x\ge2\Rightarrow2x+2015\ge2019\)
\(\Rightarrow A\le\frac{1}{2019}\)Dấu '' = '' xảy ra khi x = 2
TH2 : \(x\le-2017\)\(\Rightarrow\left|x+2017\right|=-x-2017\)
\(\left|x-2\right|=2-x\)
\(\Rightarrow A=\frac{1}{-2x-2015}\)
\(x\le-2017\Rightarrow-2x\ge4034\)
\(\Rightarrow-2x-2015\ge2019\)
\(\Rightarrow A\le\frac{1}{2019}\). Dấu '' = '' xảy ra \(\Leftrightarrow x=-2017\)
TH3 : \(-2017< x< 2\)\(\Rightarrow\left|x+2017\right|=x+2017\)
\(\left|x-2\right|=2-x\)
\(\Rightarrow A=\frac{1}{2019}\)
Vậy GTLN của A là \(\frac{1}{2019}\)
Dấu '' = '' xảy ra \(\Leftrightarrow-2017\le x\le2\)