\(A=2+x-x^2=\frac{-1}{4}+x-x^2+\frac{9}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)
Dấu \(=\)khi \(x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\).
Vậy \(maxA=\frac{9}{4}\).
\(A=-x^2+x+2=-\left(x^2-x-2\right)\)
\(=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{9}{4}\right)=-\left(x-\frac{1}{2}\right)^2+\frac{3}{2}\le\frac{3}{2}\)
Dấu ''='' xảy ra khi \(x=\frac{1}{2}\)
Vậy GTNN A là 3/2 khi x = 1/2
xin lỗi mình rút gọn nhầm, lag
sửa bài : \(A=-x^2+x+2=-\left(x^2-x-2\right)\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)
Dấu ''='' xảy ra khi \(x=\frac{1}{2}\)
Vậy GTLN A là 9/4 khi x = 1/2
Trả lời:
\(A=2+x-x^2=-x^2+x+2=-x^2+2\cdot x\cdot\frac{1}{2}-\frac{1}{4}+\frac{9}{4}=-\left(x^2-2x\frac{1}{2}+\frac{1}{4}\right)+\frac{9}{4}\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow-\left(x-\frac{1}{2}\right)^2\le0\forall x\)
\(\Leftrightarrow-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\forall x\)
Dấu "=" xảy ra khi \(x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của A = 9/4 khi x = 1/2